Lighthouse Blog
Read the latest insights from industry experts on the rapidly evolving legal and technology landscapes with topics including strategic and technology-driven approaches to eDiscovery, innovation in artificial intelligence and analytics, modern data challenges, and more.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Blog

Rethinking the EDRM for Today’s Evolving eDiscovery Data Landscape
The approach of a new year is often a good time to step back and take stock of the eDiscovery industry, so that we can be better prepared to move forward. One of the most dramatic changes over the past few years has been the seismic shift across the legal and corporate data landscapes. That shift has slowly been expanding the concept of eDiscovery beyond a single-litigation focus, to encompass data governance, data privacy and security, and an overall more holistic, strategic approach to review and analysis.As we prepare to move forward in this brave new world, it’s important to understand how those industry changes affect the traditional framework of the eDiscovery process: the Electronic Discovery Reference Model (EDRM). Recently, I was lucky enough to join a panel of industry experts, including Microsoft’s EJ Bastien, TracyAnn Eggen from CommonSpirit Health, and Lighthouse’s Sarah Barsky-Harlan, to dive deeper into that specific issue. Together, we tackled questions like: Does the EDRM still apply in today’s more complex eDiscovery environment? If so, how is the evolving data and eDiscovery landscape reshaping how organizations and law firms think about the EDRM? How can the EDRM be used to meet today’s more complex communication, data, and business challenges?Below are some of the key themes and ideas that emanated from that discussion: A Brave New Data World: Dynamic Changes in eDiscoverySince its inception, the EDRM has been the industry’s standard approach to the eDiscovery process (i.e., identification, collection, processing, review, analysis, and production of electronically stored information (ESI)). However, what we’re seeing today is that organizations and law firms now must think about eDiscovery in much broader terms than that traditionally very linear method. There are three primary reasons for this change:New cloud-based and Software as a Service (SaaS) systems: Enterprise systems are not nearly as controlled by the underlying organization as they used to be. Even five years ago, IT departments could more closely manage what software was installed, as well as when, how, and what upgrades were rolled out. Now those updates and installations are managed by cloud providers, with upgrades rolling out on an almost weekly basis – often with no notice to the organization. All those changes have downstream eDiscovery impacts, which must be dealt with at each stage of the EDRM process.New data formats: Data is no longer structured in the traditional document “family” of an email parent with attachment children. The shift to chat and collaboration platforms within organizations means that communications and workflows generate more data across multiple data sources and are much more fluid and informal. For instance, instead of an employee working on a static document saved on a desktop and then passing that document back and forth to co-workers via email, those employees may work on that document together while it’s saved on a cloud-based collaboration platform, chat about it via an in-office chat application, post updates on it via the collaboration tool channel, as well as email copies back and forth to each other. This means counsel must analyze how relevant data ties together and analyze the relationships between data sources in order to understand the full story of a communication during an investigation or litigation.New capabilities with eDiscovery technology: There are many new types of capabilities that are native to enterprise systems, as well as new types of analytics and artificial intelligence (AI) that can handle more data at scale. These new capabilities are allowing case teams to leverage past data on new cases and get to key data more quickly in the EDRM process. The Impact: How Those Changes Affect the EDRM FrameworkThinking of the EDRM as a monolithic linear process that flows straight from beginning (collection) to end (production) does not fit the way eDiscovery takes place in practice anymore. There is a world of complexity within each step of the EDRM – one that is highly dependent on the data source. And the decisions made along the way for each data source at each new step will impact what happens next – often in a non-linear fashion: Sometimes that next step will send practitioners back to collection again, because they found another data source during review. Sometimes review takes place simultaneously with collection or processing phases, depending on the data source and those newer capabilities discussed above. In short, the old model of collecting all data, exporting it all, and then reviewing it all, in large chunks, one step at a time, is no longer applicable nor practical.Instead, a “mini-EDRM” framework might make more sense, where organizations prepare workflows for the preservation, collection, processing, and review of each particular data source. Thinking of the EDRM in this way also helps the framework stay relevant and future-proof as practitioners deal with the sea-change happening across our data landscape. Practitioners need to be agile enough to handle new data sources as they pop up, for each step of the EDRM process, and then be prepared to do it all over again when someone in a deposition mentions another new data source, and to adapt it when something changes in the data source. A mini-EDRM framework would help organizations and practitioners better meet those challenges.The EDRM and Data-in-PlaceAs noted above, the eDiscovery process is now much broader and has much more of an impact on organizational information governance and data-in-place than ever before. This presents an opportunity to use learnings from across the EDRM to more effectively manage data “to the left” of that traditional process. For example, if a particular data source was problematic during review, that information can be disseminated at the organizational level and help inform how that source is used within the organization moving forward. Or if practitioners notice a large volume of irrelevant data during review that shouldn’t exist in the system at all, that information can be used to redraft document retention policies. In this way, eDiscovery (and the EDRM framework) can now be a force for change over the entire organization.Thinking Beyond a Single MatterIn today’s more dynamic and voluminous data landscape, the work we did in the past is more valuable than ever before and it can be used to inform and impact current processes across the EDRM.This can come in the form of people and institutional knowledge: experienced and consistent staff and outside partners are an invaluable resource. These organizational experts can use their understanding and experience with an organization’s past matters, system architecture, data sources, workflows etc. to improve eDiscovery efficiency and solve current problems more effectively. It can also come in the form of technology: when the EDRM first evolved, data analytics were a much heavier lift. The process and tools were expensive and the amount of data that they could be applied to was much smaller than today. Advancements in AI capabilities now allow us to analyze much larger volumes of data with much more accurate results. Thus, this newer, advanced AI technology is now capable of leveraging the goldmine of millions of previous decisions made by attorneys on an organization’s past matters. That work product is baked into the data, and advanced AI can use it to make more accurate decisions on current data at a much larger scale than ever before.Tips to Keep the EDRM Applicable in an Evolving Data LandscapeStrive to retain institutional knowledge across matters: The constantly evolving eDiscovery landscape makes continuity and retaining institutional knowledge incredibly important. Starting from scratch each time you confront a new data source or problem along the EDRM is no longer practical with today’s diversified and larger data volumes. Work to cultivate valuable partners and staff who will work to understand your organization’s data architecture, as well as the eDiscovery workflows that are effective within your environment.Lean on your peers: Chances are, if you’re facing a problem with a challenging data source at one stage of the EDRM, someone in your peer group has also faced the same or a similar problem. Don’t be afraid to reach out and ask folks to benchmark. Peer experience can help each practitioner learn and move forward, solving challenging industry problems along the way.Open the lines of communication: Because the EDRM process is much more iterative and each step impacts other steps, it is incredibly important that the people working on those steps do not work in silos. Everyone should know the downstream impacts of their decisions and workflows.Test… and test again: Employ a testing framework to test the impact of eDiscovery workflows on the underlying platforms, and then have a feedback loop to apply changes. This will ensure your eDiscovery program is forward-thinking, as opposed to reactive. Automate where possible: When striving for repeatable, defensible eDiscovery processes, predictability is key. And automation, when feasible, is a great way to achieve that predictability. Automating workflows across the EDRM will not only help improve efficiency and lower costs, it will also help minimize risk and keep your eDiscovery program defensible.information-governance; ediscovery-review; chat-and-collaboration-datacloud, analytics, information-governance, ediscovery-process, blog, information-governance, ediscovery-review, chat-and-collaboration-data,cloud; analytics; information-governance; ediscovery-process; bloglighthouse
Information Governance
eDiscovery and Review
Chat and Collaboration Data
Blog

Minimizing Self-Service eDiscovery Software Tradeoffs: 3 Tips Before Purchasing
Legal professionals often take for granted that the eDiscovery software they leverage in-house must come with capability tradeoffs (i.e., if the production capability is easy to use, then the analytics tools are lacking; if the processing functionality is fast and robust, then the document review platform is clunky and hard to leverage, etc.).The idea that these tradeoffs are unavoidable may be a relic passed down from the history of eDiscovery. The discovery phase of litigation didn’t involve “eDiscovery” until the 1990s/early 2000s, when the dramatic increase in electronic communication led to larger volumes of electronically stored information (ESI) within organizations. This gave rise to eDiscovery software that was designed to help attorneys and legal professionals process, review, analyze, and produce ESI during discovery. Back then, these software platforms were solely hosted and handled by technology providers that weren’t yet focused entirely on the business of eDiscovery. Because both the software and the field of eDiscovery were new, the technology often came with a slew of tradeoffs. At the time, attorneys and legal professionals were just happy to have a way to review and produce ESI in an organized fashion, and so took the tradeoffs as a necessary evil.But eDiscovery technology, as well as legal professionals’ technological savvy, has advanced light years beyond where it was even five years ago. Many firms and organizations now have the knowledge and staff needed to move to a “self-service, spectra” eDiscovery model for some or all of their matters – and eDiscovery technology has advanced enough to allow them to do so. Unfortunately, despite these technological advancements, the tradeoffs that were so inherent in the original eDiscovery software still exist in some self-service, spectra eDiscovery platforms. Today, these tradeoffs often occur when technology providers attempt to develop all the technology required in an eDiscovery platform themselves. The eDiscovery process requires multiple technologies and services to perform drastically different and overlapping functions – making it nearly impossible for one company to design the best technology for each and every eDiscovery function, from processing to review to analytics to production.To make matters worse, the ramifications of these tradeoffs are much wider than they were a decade ago. Datasets are much larger and more diverse than ever before – meaning that technological gaps that cause inefficiency or poor work product will skyrocket eDiscovery costs, amplify risk, and create massive headaches for litigation teams. But because these types of tradeoffs have always existed in one form or another since the inception of eDiscovery, legal professionals still tend to accept them without question.But rest assured best-in-class technology does exist now for each eDiscovery function. The trick is being able to identify the functionality that is most important to your firm or organization, and then select a self-service, spectra eDiscovery platform that ties all the best technology for those functions together under one seamless user interface.Below are three key steps to prepare for the research and purchasing process that will help drastically minimize the tradeoffs that many attorneys have grown accustomed to dealing with in self-service, spectra eDiscovery technology. Before you begin to research eDiscovery software, you’ve got to fully understand your firm or organization’s needs. This means finding out what eDiscovery technology capabilities, functionality, and features are most important to all relevant stakeholders. To do so:Talk to your legal professionals and lawyers about what they like and dislike about the current technology they use. Don’t be surprised if users have different (or even opposing) positions depending on how they use the software. One group may want a review platform that is scaled down without a lot of bells and whistles, while another group heavily relies on advanced analytics and artificial intelligence (AI) capabilities. This is common, especially among groups that handle vastly different matter types, and can actually be a valuable consideration during the evaluation process. For instance, in the scenario above, you know you will need to look for eDiscovery software that can flex and scale from the smallest matter to the largest, as well as one that can create different templates for disparate use cases. In this way, you can ensure you purchase one self-service, spectra eDiscovery software that will meet the diverse needs of all your users.Communicate with IT and data security teams to ensure that any platform conforms with their requirements.These two groups often end up being pulled into discussions too late once purchasing decisions have already been made. This is unfortunate, as they are integral to the implementation process, as well as to ensuring that all software is secure and meets all applicable data security requirements. Data security in eDiscovery is non-negotiable, so you want to be sure that the eDiscovery technology software you select meets your firm or organization’s data security requirements before you get too far along in the purchasing process.Create a prioritized list of the most important capabilities, functionality, and attributes to all the stakeholders once you’ve gathered feedback.Having a defined list of must-haves and desired capabilities will make it easier to vet potential technology software and ultimately help you identify a technology platform that fits the needs of all relevant stakeholders.ConclusionWith today’s advanced technology, attorneys and legal professionals should not have to deal with technology gaps in their self-service, spectra eDiscovery software, just as law firms and organizations should not have to blindly accept the higher eDiscovery cost and risk those gaps cause downstream. Powerful best-in-class technology for each step of the eDiscovery process is out there. Leveraging the steps above will help you find a self-service, spectra eDiscovery software solution that ties all the functionality you need under one seamless, easy-to-use interface.For more detailed advice about navigating the purchasing process for self-service, spectra eDiscovery software, download our self-service, spectra eDiscovery Buyer’s Guide here. ediscovery-review; ai-and-analyticsself-service, spectra, review, analytics, processing, blog, production, ediscovery-review, ai-and-analyticsself-service, spectra; review; analytics; processing; blog; productionsarah moran
eDiscovery and Review
AI and Analytics
Blog

Law & Candor Season 8 Available Now!
The Law & Candor podcast is back for Season 8, continuing its exploration of the legal technology revolution. Our co-hosts return with a stellar slate of expert guests and captivating conversations, all striving to elevate the current state of our industry and look to the future.Bill Mariano and Rob Hellewell are back to help lead those discussions in six easily digestible episodes that cover a range of topics, including: AI and linguistics in eDiscovery, staying ahead of AI innovation, family versus four corner review, cross-matter review strategy and implementation, unindexed items in Microsoft 365, and the rise of wearable devices and health-related apps.Episode 1. Finding Lingua Franca: The Power of AI and Linguistics for Legal TechnologyEpisode 2. Staying Ahead of the AI CurveEpisode 3. eDiscovery Review: Family Vs. Four CornerEpisode 4. Achieving Cross-Matter Review Discipline, Cost Control, and EfficiencyEpisode 5. Understanding Microsoft 365 Unindexed Items Episode 6. Getting Personal—Wearable Devices, Data, and CoGetting Personal—Wearable Devices, Data, and Compliance Listen now or bookmark individual episodes to listen to them later, and be sure to follow the latest updates on Law & Candor's Twitter. And if you want to catch up on past seasons or special editions, click here.For questions regarding this podcast and its content, please reach out to us at info@lighthouseglobal.com.ediscovery-reviewblog, podcast, ediscovery-review,blog; podcastlighthouse
eDiscovery and Review
Blog

What Attorneys Should Know About Advanced AI in eDiscovery: A Brief Discussion
What does Artificial Intelligence (AI) mean to you? In the non-legal space, AI has taken a prominent role, influencing almost every facet of our day-to-day life – from how we socialize, to our medical care, to how we eat, to what we wear, and even how we choose our partners.In the eDiscovery space, AI has played a much more discreet but nonetheless important role. Its limited adoption so far is due, in part, to the fact that the legal industry tends to be much more risk averse than other industries. The innate trust we have placed in more advanced forms of AI technology in the non-legal world to help guide our decision making has not carried over to eDiscovery – partly because attorneys often feel that they don’t have the requisite technological expertise to explain the results to opposing counsel or judges. The result: most attorneys performing eDiscovery tasks are either not using AI technology at all or are using AI technology that is generations older than the technology currently being used in other industries. All this despite the fact that attorneys facing discovery requests today must regularly analyze mountains of complicated data under tight deadlines.One of the most prominent roles AI currently plays in eDiscovery is within technology assisted review (TAR). TAR uses “supervised” machine learning algorithms to classify documents for responsiveness based on human input. This classification allows attorneys to prioritize the most important documents for human review and, often, reduce the number of documents that need to be reviewed by humans. TAR has proven to be especially helpful in HSR Second Requests and other matters with demanding deadlines. However, the simple machine learning technology behind TAR is already decades old and has not been updated, even as AI technology has significantly advanced. This older AI technology is quickly becoming incapable of handing modern datasets, which are infinitely more voluminous and complicated than they were even five years ago.Because the legal industry is slower to adopt more advanced AI technology, many attorneys have a muddled view of what advanced AI technology exists, how it works, and how that technology can assist attorneys in eDiscovery today. That confusion becomes a significant detriment to modern attorneys, who must start being more comfortable with adopting and utilizing the more advanced AI tools available today if they stand a chance overcoming the increasingly complicated data challenges in eDiscovery. This confusion behind AI can also lead to a vicious cycle that further slows down technology adoption in the legal space: attorneys who lack confidence in their ability to understand available AI technology subsequently resist adoption of that technology; that lack of adoption then puts them even further behind the technology learning curve as technology continues to evolve. This is where legal technology companies with dedicated technology services can help. A good legal technology company will have staff on hand whose entire job it is to evaluate new technology and test its application and accuracy within modern datasets. Thus, an attorney who has no interest in becoming a technology expert just needs to be proficient enough to know the type of tools that might fit their needs – the right technology vendor can do the rest. Technology experts can also step in to help provide detailed explanations of how the technology works to stakeholders, as well as verify the outcome to skeptical opposing counsel and judges. Moreover, a good technology provider can also supply expert resources to perform much of the day-to-day utilization of the tool. In essence, a good legal technology vendor can become a trusted part of any attorney team – allowing attorneys to remain focused on the substantive legal issues they are facing. With that in mind, it’s important to “demystify” some common AI concepts used within the eDiscovery space and explain the benefits more advanced forms of AI technology can provide within eDiscovery. Once comfortable with the information provided here, readers can take a deeper dive into the advantages of leveraging advanced AI within TAR workflows in our full white paper – “TAR + Advanced AI: The Future is Now.” Armed with this information, attorneys can begin a more thoughtful conversation with stakeholders and legal technology companies regarding how to move forward with more advanced AI technology within their own practice.Demystifying AI Jargon in eDiscoveryAt its most basic, AI refers to the science of making intelligent machines – ones that can perform tasks traditionally performed by human beings. Therefore, AI is a broad field that encompasses many subfields and branches. The most relevant to eDiscovery are machine learning, deep learning, and natural language processing (NLP). As noted above, the technology behind legacy TAR workflows is supervised machine learning. Supervised machine learning uses human input to mimic the way humans learn through algorithms that are trained to make classifications and predictions. In contrast, deep learning eliminates some of that human training by automating the feature extraction process, which enables it to tackle larger datasets. NLP is a separate branch of machine learning that can understand text in context (in effect, it can better understand language the way humans understand it).The difference between the AI technology in legacy TAR workflows and more advanced AI tools lies in the fact that advanced AI tools use a combination of AI subsets and branches (machine learning, deep learning, and NLP) rather than just the supervised machine learning used in TAR. Understanding the Benefits of Advanced AIThis combination of AI subsets and branches used in advanced AI tools provides additional capabilities that are increasingly necessary to tackle modern datasets. These tools not only utilize the statistical prediction that supervised machine learning produces (which enables traditional TAR workflows), but also include the language and contextual understanding that deep learning and NLP provide. Deep learning and NLP technology also enable more advanced tools to look at all angles of a document (including metadata, data source, recipients, etc.) when making a prediction, rather than relying solely on text. Taking all context into consideration is increasingly important, especially when making privilege predictions that lead to expensive attorney review if a document is flagged for privilege. For example, with traditional TAR, the word “judge” in the phrases, “I don’t think the judge will like this!” on an email thread between two attorneys and, “Don’t judge me!” on a chat thread with 60 people regarding a fantasy football league will be classified the same way – because statistically, there is not much difference between how the word “judge” is placed within both sentences. However, newer tools that combine supervised machine learning with deep learning and NLP can learn the context of when the word “judge” is used as a noun (i.e., an adjudicator in a court of law) within an email thread with a small number of recipients versus when the word is being used as a verb on an informal chat thread with many recipients. The context of the data source and how words are used matters, and an advanced AI tool that leverages a combination of technologies can better understand that context.Using Advanced AI with TAROne common misconception regarding using newer, more advanced AI tools is that old workflows and models must go out the window. This is simply not true. While there may be some changes to review workflows due to the added efficiency generated by advanced AI tools (the ability to conduct privilege analysis simultaneously with responsive analysis, for example), attorneys can still use the traditional TAR 1.0 and TAR 2.0 workflows they are familiar with in combination with more advanced AI tools. Attorneys can still direct subject matter experts or reviewers to code documents, and the AI tool will learn from those decisions and predictive responsiveness, privilege, etc.The difference will be in the results. A more advanced AI tool’s predictions regarding privilege and responsiveness will be more accurate due to its ability to take nuance and context into consideration –leading to lower review costs and more accurate productions.ConclusionMany attorneys are still hesitant to move away from the older, AI eDiscovery tools they have used for the last decade. But today’s larger, more complicated datasets require more advanced AI tools. Attorneys who fear broadening their technology toolbox to include more advanced AI may find themselves struggling to stay within eDiscovery budgets, spending more time on finding and less time strategizing – and possibly even falling behind on their discovery obligations.But this fear and hesitancy can be overcome with education, transparency, and support from legal technology companies. Attorneys should look for the right technology partner who not only offers access to more advanced AI tools, but also provides implementation support and expert advisory services to help explain the technology and results to other stakeholders, opposing counsel, and judges.To learn more about the advantages of leveraging advanced AI within TAR workflows, download our white paper, “TAR + Advanced AI: The Future is Now.” And to discuss this topic more, feel free to connect with me at smoran@lighthouseglobal.com.ai-and-analytics; chat-and-collaboration-data; ediscovery-review; lighting-the-path-to-better-ediscoveryreview, ai-big-data, tar-predictive-coding, blog, ai-and-analytics, chat-and-collaboration-data, ediscovery-review,review; ai-big-data; tar-predictive-coding; blogai-analyticssarah moran
AI and Analytics
Chat and Collaboration Data
eDiscovery and Review
Lighting the Path to Better eDiscovery
Blog

What Skills Do Lawyers Need to Excel in a New Era of Business?
The theme at the last CLOC conference was all about how the legal function is going through a tremendous evolution. Businesses are changing rapidly through digital transformation and remote or hybrid work environments while trying to capture the attention of technology saturated consumers. To remain competitive, legal departments must evolve to handle new types of work and constantly advancing processes and technologies, and consider how the legal function impacts the broader organization. They need to do this while also showing that their own department is embracing change, staying up on technology, and becoming more efficient. To do this well, legal department heads and the lawyers and professionals in the department will have to learn, and practice, some new skills: embracing technology, project management, change management, and adaptability. Some good news—recent trends in the legal space are helping departments and professionals facilitate and adapt to these changes. The first is an uptick in legal technologies available to legal departments. Instead of adapting to whatever technology the business makes available to the department, there are technologies built by lawyers for running a legal department. This trend means that lawyers have already started down the path of being more technology-forward. Second, the advent of the legal operations role—putting business discipline and rigor around the functioning of the legal department— has brought more robust project management and change management into many law departments. With these foundational blocks in place, lawyers must evolve their skills to take their department to the next level.The first, and likely most obvious, skill an attorney needs in a rapidly evolving business environment is a firm grasp on existing and emerging technology. There are two important categories of technology to consider—the first is legal technology and the second is broader technology trends. Legal technology not only facilitates the day-to-day functioning of the legal department—with e-billing, contract management, and project intake and workflow software—but also includes more complex categories such as eDiscovery and data management. To learn more about these technologies you can attend CLEs about relevant technologies in your area of practice or attend a legal technology conference. Outside of the legal space, there are also many general technology trends that are important for lawyers to be immersed in, including digital transformation, artificial intelligence, and digital payments and cryptocurrency. Digital transformation is all about changing from a brick and mortar, paper-based business to one that strategically leverages technology, digital tools, and the cloud to do the work. This is important for lawyers because it impacts the way their organizations contract and manage these technologies. Migrating to the cloud also benefits lawyers because it provides new technologies to manage legal departments.[1] Like cloud, AI has the ability to transform how lawyers work (e.g., check out our recent blog post on utilizing chatbots) as well as how their companies work. For both AI and digital transformation, reading and watching videos for IT leaders can help—although made for a different audience, there are lots of resources out there and they can provide the information relevant to lawyers. Finally, the plethora of digital payment methods and the volatility of cryptocurrency will have legal impacts in the future and lawyers should learn to understand the differences.The next set of skills is about project execution and management. As businesses change through digital transformation, it is equally important to transform the way legal departments work. To do that, learning effective business case presentation, project management, and change management are incredibly valuable talents. While diving into a full 30-page business case can sometimes be necessary, focusing time on learning to create an executive summary business case is time better spent for lawyers. You can find resources and templates in many places, including SmartSheet and Asana.There is a whole discipline around project management as well as multiple ways to drive results most effectively. Whether you take an agile approach or a more traditional method, the following skills are necessary: Cross-functional collaboration, including understanding and empathy for other departments, and influencing othersCommunication, including how to communicate effectively with a remote team – a reality that is often the norm in today’s worldTime management and prioritizationLeadership – leading a team and inspiring a team, and keeping team members engaged and focused both in the same office or working remotelyFacilitating a learning mindset across the project and team – ensuring that people are looking out for ways to continuously improve, learning from each step of the project, and iterating on each phase of the projectA couple of good resources for developing these skills include PMI.org, and LinkedIn Learning courses such as Project Leadership, Project Management Foundations: Communication, and Project Management Tips. Note that this is a discipline that can take years to perfect so focus on getting familiar with the concepts and then look for ways to get real life experience in your business. The best way to master these skills is through practice.While project management focuses on the process where you create a change, change management is a separate set of skills focused on moving people through that change. There are two components of change management lawyers need to know. The first is how to manage their own reaction to change—being adaptable can bring a lot of value to a volatile world.[2] Professor Anne Converse Willkom of Drexel University provides some great ways to work on becoming more adaptable here. The second part of change management is helping others through change. This may be your team or it could be a team impacted by a project you are leading. Harvard Business Review has a whole category of writing dedicated to this area, highlighting the importance of leading through change.There is a lot of information and resources to move through so it’s important to prioritize the areas and skills that will impact your role now and as you move through your career. From there, identify the list of resources you want to access to master those areas then work it in to your schedule. It’s important to budget 2-4 hours a week, at minimum, building your skills in one of these areas. If that seems like a lot, keep in mind that it is only 5-10% of a standard work week.‍[1] You can find more information on what this change is in this article by CIO.[2] It is sometimes hard to judge adaptability because we tend to be surrounded by like-minded thinkers. As such, relying on a third party resource can help. There is a great Forbes article that shares the signs of an adaptable person. Evaluate yourself versus this list and work on areas where you may not be adaptable.ediscovery-review; legal-operationsediscovery-process, blog, project-management, ediscovery-review, legal-operationsediscovery-process; blog; project-managementlighthouse
eDiscovery and Review
Legal Operations
Blog

What is the Future of TAR in eDiscovery? (Spoiler Alert – It Involves Advanced AI and Expert Services)
Since the dawn of modern litigation, attorneys have grappled with finding the most efficient and strategic method of producing discovery. However, the shift to computers and electronically stored information (ESI) within organizations since the 1990s exponentially complicated that process. Rather than sifting through filing cabinets and boxes, litigation teams suddenly found themselves looking to technology to help them review and produce large volumes of ESI pulled from email accounts, hard drives, and more recently, cloud storage. In effect, because technology changed the way people communicated, the legal industry was forced to change its discovery process.The Rise of TARDue to growing data volumes in the mid-2000s, the process of large teams of attorneys looking at electronic documents one-by-one was becoming infeasible. Forward-thinking attorneys again looked to technology to help make the process more practical and efficient – specifically, to a subset of artificial intelligence (AI) technology called “machine learning” that could help predict the responsiveness of documents. This process of using machine learning to score a dataset according to the likelihood of responsiveness to minimize the amount of human review became known as technology assisted review (TAR).TAR proved invaluable because machine learning algorithms’ classification of documents enabled attorneys to prioritize important documents for human review and, in some cases, avoid reviewing large portions of documents. With the original form of TAR, a small number of highly trained subject matter experts review and code a randomly selected group of documents, which are then used to train the computer. Once trained, the computer can score all the documents in the dataset according to the likelihood of responsiveness. Using statistical measures, a cutoff point is determined, below which the remaining documents do not require human review because they are deemed statistically non-responsive to the discovery request.Eventually, a second iteration of TAR was developed. Known as TAR 2.0, this second iteration is based on the same supervised machine learning technology as the riginal TAR (now known as TAR 1.0) – but rather than the simple learning of TAR 1.0, TAR 2.0 utilizes a process to continuously learn from reviewer decisions. This eliminates the need for highly trained subject matter experts to train the system with a control set of documents at the outset of the matter. TAR 2.0 workflows can help sort and prioritize documents as reviewers code, constantly funneling the most responsive to the top for review.Modern Data ChallengesBut while both TAR 1.0 and TAR 2.0 are still widely used in eDiscovery today – the data landscape looks drastically different than it did when TAR first made its debut. Smartphones, social media applications, ephemeral messaging systems, and cloud-based collaboration platforms, for example, did not exist twenty years ago but are all commonly used within organizations for communication today. This new technology generates vast amounts of complicated data that, in turn, must be collected and analyzed during litigations and investigations.Aside from the new variety of data, the volume and velocity of modern data is also significantly different than it was twenty years ago. For instance, the amount of data generated, captured, copied, and consumed worldwide in 2010 was just two zettabytes. By 2020, that volume had grown to 64.2 zettabytes.[1]Despite this modern data revolution, litigation teams are still using the same machine learning technology to perform TAR as they did when it was first introduced over a decade ago – and that technology was already more than a decade old back then. TAR as it currently stands is not built for big data – the extremely large, varied, and complex modern datasets that attorneys must increasingly deal with when handling discovery requests. These simple AI systems cannot scale the way more advanced forms of AI can in order to tackle large datasets. They also lack the ability to take context, metadata, and modern language into account when making coding predictions. The snail pace of the evolution of TAR technology in the face of the lightning-fast evolution of modern data is quickly becoming a problem.The Future of TARThe solution to the challenge of modern data lies in updating TAR workflows to include a variety of more advanced AI technology, together with bringing on technology experts and linguistics to help wield them. To begin with, for TAR to remain effective in a modern data environment, it is necessary to incorporate tools that leverage more advanced subsets of AI, such as deep learning and natural language processing (NLP), into the TAR process. In contrast to simple machine learning (which can only analyze the text of a document), newer tools leveraging more advanced AI can analyze metadata, context, and even the sentiment of the language used within a document. Additionally, bringing in linguists and experienced technologists to expertly handle massive data volumes allows attorneys to focus on the actual substantive legal issues at hand, rather than attempting to become an eDiscovery Frankenstein (i.e., a lawyer + a data scientist + a technology expert + and a linguistic expert all rolled into one).This combination of advanced AI technology and expert service will enable litigation teams to reinvent data review to make it more feasible, effective, and manageable in a modern era. For example, because more advanced AI is capable of handling large data volumes and looking at documents from multiple dimensions, technology experts and attorneys can start working together to put a system in place to recycle data and past attorney work product from previous eDiscovery reviews. This type of “data reuse” can be especially helpful in tackling the traditionally more expensive and time-consuming aspects of eDiscovery reviews, like privilege and sensitive information identification and can also help remove large swaths of ROT (redundant, obsolete, or trivial data). When technology experts can leverage past data to train a more advanced AI tool, legal teams can immediately reduce the need for human review in the current case. In this way, this combination of advanced AI and expert service can reduce the endless “reinventing the wheel” that historically happens on each new matter.ConclusionThe same cycle that brought technology into the discovery process is again prompting a new change in eDiscovery. The way people communicate and the systems used to facilitate that communication at work are changing, and current TAR technology is not equipped to handle that change effectively. It’s time to start incorporating more modern AI technology and expert services into TAR workflows to make eDiscovery feasible in a modern era.To learn more about the advantages of leveraging advanced AI within TAR workflows, please download our white paper, entitled “TAR + Advanced AI: The Future is Now.” And to discuss this topic more, feel free to connect with me at smoran@lighthouseglobal.com. [1] “Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2025” https://www.statista.com/statistics/871513/worldwide-data-created/practical-applications-of-ai-in-ediscovery; ai-and-analytics; ediscovery-reviewai-big-data, tar-predictive-coding, ediscovery-process, prism, blog, data-reuse, ai-and-analytics, ediscovery-reviewai-big-data; tar-predictive-coding; ediscovery-process; prism; blog; data-reusesarah moran
Practical Applications of AI in eDiscovery
AI and Analytics
eDiscovery and Review
Blog

Analytics and Predictive Coding Technology for Corporate Attorneys: Six Use Cases
Below is a copy of a featured article written by Jennifer Swanton of Medtronic, Shannon Capone Kirk of Ropes & Gray, and John Del Piero of Lighthouse for Legaltech News.This is the second article in a two-part series, designed to help create a better relationship between corporate attorneys and advanced technology. In our first article, we worked to demystify the language technology providers tend to use around AI and analytics technology.With the terminology now defined, we will now focus on six specific ways that corporate legal teams can put this type of technology to work in the eDiscovery and compliance space to improve cost, outcome, efficiencies.1. Document Review and Data Prioritization: The earliest example of how to maximize the value of analytics in eDiscovery was the introduction of TAR (technology-assisted review). CAL (or continuous active learning) allows counsel to see the most likely to be relevant documents much earlier on in the process than if they had been simply looking at search term results, which are not categorized or prioritized and are often overbroad. Plainly put, it is the difference between an organized review and a disorganized review.Data prioritization offers strategic value to the case team, enabling them to get to the crux of a case earlier in the process and ultimately develop a better strategic plan for cost and outcomes. This process also offers the ability to get to a point of review where the likelihood of additional relevant information is so low, no new review is needed. This will save time and money on large document review projects. Such prioritization is critical for time-sensitive internal investigations, as well.To dive further into the Pandora analogy we used above: if you were to listen to a random shuffle of songs on Pandora without giving feedback on what you like and don’t like, you’d likely listen for days to encounter several songs you love. Whereas, if you give Pandora feedback, it learns and you’re likely to hear several songs you love within hours. So why suffer days of listening to show tunes and harp solos when what you really love is the brilliant artistry found in songs by the likes of Ray LaMontagne?2. Custodian and Data Source Identification: Advanced analytics that can analyze complex concepts within data can be a powerful tool to clearly identify your relevant data custodians, where that data lives, and other data sources worth considering. Most conceptual analytics technology can now provide real-time visibility into information about custodians, including the date range of the data collected and the data types delivered. More advanced technology that also analyzes metadata can provide you with a deeper understanding of how custodians interact with other people, including the ability to analyze patterns in timing and speech, and even the sentiment and tone of those interactions.All of this information can be used to help quickly determine whether or not a prospective custodian has information relevant to the case that needs to be collected, or if any supplemental collections are required to close a gap in the date range collected. This, in turn, will help reduce the amount of collections required and minimize processing time in fast-paced cases. These tools also help determine which data sources are likely to hold your most relevant information and where supplemental collections may be warranted.Above: Brainspace display of communication networks, which enable users to identify custodians of interest, as well as related people and conversations.3. Identifying Privileged and Personal Information: Another powerful way to leverage analytics in the eDiscovery workflow is to identify privileged documents in a far more cost-effective way than we could in the past. New privilege categorization software creates significant efficiencies by analyzing the text, metadata, and previous coding of documents in order to categorize documents according to the likelihood that they are actually privileged.More advanced analytics tools can now identify documents that have been flagged as privileged by traditional privilege term screens, but have a high likelihood of not containing privileged communications. For example, the technology identifies that the document was sent to a third-party (thus breaking the privilege attorney-client privilege) or because the only privilege term within the document is contained within a boilerplate footer.These more advanced analytics tools can be much more effective at identifying privileged documents than a privilege search term list, and can help case teams successfully meet rolling production deadlines by pushing the documents that are less likely to be privileged (i.e. those that require less privilege review) to the front of the review line. When integrated with other eDiscovery applications, you can also create a defensible privilege log that can be produced for the litigation team.Additionally, flagging potential PII and protected intellectual property (IP) caught up in a large data set can be challenging, but analytics technology provides in-house legal teams with an important ally for automating those processes. Advanced analytics can streamline the process of locating and isolating this sensitive data, which is often hiding in a variety of different systems, folders, and other information silos. Tools allow you to flag Health Insurance Portability and Accountability Act (HIPAA) protected information based on common format and structure to help quickly move through documents and accurately identify and redact needed information.4. Information Governance: One of the high-stakes elements of large data collections is the importance of parsing out highly sensitive records, such as those that contain PII and protected IP. This information is incredibly important to protect company data and also to comply with the growing number of data privacy regulations worldwide, including Europe’s General Data Protection Regulation (GDPR), the California Consumer Protection Act (CCPA), and HIPAA. Analytics can help identify and flag documents per their appropriate document classification. This can be helpful for both the business in their day-to-day operations as well as the legal team in responding to requests.5. Data Re-Use: One of the largest potentials with the use of analytics is the ability to save time and money on your next matter. Technologically advanced companies are now starting to use analytics technology to integrate previous attorney work product, case information, and documents across all organization matters. On a micro level, recycling and analyzing previous work product allows companies to stop re-inventing the wheel on each case and aids in much faster identification of privilege, personal information, and non-responsive documents.For example, organizations often pay to store documents that contain previous privilege tagging from past matters in inactive or archived databases. Those documents, sitting unused in storage, can be separately re-ingested and used to train a privilege model in the new matter, allowing legal teams to immediately eliminate documents that were identified as privileged in previous reviews—even prior to any human coding in the new matter.On a macro level, this type of advanced capability enables organizations to make data-driven decisions across their entire eDiscovery landscape. Rather than looking at each new matter on an individual basis in a singular lens, legal teams can use advanced analytics to analyze previously coded data across the organization’s entire legal portfolio. This can provide previously unheard of insights, like which custodians often contain the most privileged documents matter over matter, or if a data source rarely produces responsive documents. Data re-use can also come in handy in portfolio matters that have overlapping custodians and data sets and need common production. The overall results are more strategic legal and data decisions, more favorable case outcomes, and increased cost efficiency.6. Accuracy: Finally, and potentially the most important reason to use analytics tools, is to increase accuracy and have a better work product. Studies have shown that tools like predictive coding are more accurate than human work product. That, coupled with the potential for cost savings, should be all one needs to utilize these technologies.As useful as these new analytics tools are to in-house legal teams in their efforts to manage eDiscovery today, it is important to understand that the great promise of these technologies is the fact that they are in a state of continuous improvement. Because analytics tools learn, they refine and “get smarter” as they review more data sets. We all know that we’re on just the cusp of what analytics will bring to our profession—but we believe the future of this technology in the area of eDiscovery management is here now.ai-and-analyticstar-predictive-coding, blog, corporate, ai, ai-and-analytics,tar-predictive-coding; blog; corporate; aijohn del piero
AI and Analytics
Blog

Overcoming eDiscovery Trepidation - Part II: A Better Outcome
In this two-part series, I interview Gordon J. Calhoun, Esq. of Lewis Brisbois Bisgaard & Smith LLP about his thoughts on the state of eDiscovery within law firms today, including lessons learned and best practices to help attorneys overcome their trepidation of electronic discovery and build a better litigation practice. This second blog focuses on how attorneys within law firms can save their clients money, achieve better outcomes, and gain more repeat business once they overcome common misconceptions around eDiscovery.You mentioned earlier that you think attorneys who try to shoehorn volumes of electronic data into older workflows developed for paper discovery will likely cause attorneys to lose clients. Can you explain how? Sure. My point was that non-technological workflows often pop into the minds of attorneys because they are familiar, comfortable approaches to responding to document requests. Because they are familiar and can be initiated immediately, there is a great temptation to jump in and avoid planning and employing the expertise essential for an optimal workflow. Unfortunately, jumping in without much planning produces a result that is often unnecessarily costly to clients, particularly if the attorneys employ in-house resources (which are usually several times more costly than outsourced staff). In-house resources often regard document review and analysis as an undesirable assignment and have competing demands for their time from other projects and cases. This can result in unexpected delays in project completion and poor work product (in part because quality degrades when people are required to perform tasks they dislike). The end result is untimely, lower quality, and more costly than anticipated, which will ultimately cost the attorney their client.Clients will always gravitate towards the professional who can deliver a better, more cost-effective, and more efficient solution while avoiding motion expenses. That means that attorneys who are informed enough to use technology to save clients money on multiple cases are going to earn the trust and confidence of more and more clients. And that is the answer to the question as to what’s in it for the professional if he or she takes the time to learn about or partners with someone who already knows eDiscovery.Well, coming from a legal technology company, I agree with that sentiment. But we also tend to see attorneys from the other end of the spectrum: lawyers who understand the benefits advanced eDiscovery technology can provide, but avoid it because of fears around overhead expense and surprise fees. Have you seen this within your own practice? If so, how do you advise attorneys who may have similar feelings? I experience the same thing and, again, this type of thought process is completely understandable. When eDiscovery technologies were comparatively new, they seemed disproportionately expensive. The cost to process a GB of data could exceed $1,000, hosting charges ran into the many tens of dollars per month and there were no analytics to expedite review. When the project management service was in its infancy, too many of those providing services simply followed uninformed instructions from counsel. An instruction to process data was not met with inquiries as to whether all data collected should be processed or if an alternative should be explored when initial analysis indicated the data expansion would be unexpectedly large. Further, early case assessment (ECA) strategies utilizing only extracted text and metadata were years in the future. The only saving grace was that data volumes were miniscule compared to what they are today. But that was not enough to prevent widespread reports about massive eDiscovery vendor bills. As you might suspect, the problem was not so much the technology or even the lack thereof as it was the failure to spend the time to develop an appropriate workflow and manage the eDiscovery process so the results were cost effective. Any tips on how attorneys can overcome the remnant fear of eDiscovery “sticker shock”?This challenge can be met by research, planning, and negotiation: research into the optimal technologies and which providers are equipped to provide them, planning an appropriate workflow, and negotiation with eDiscovery platform providers to customize the offerings to the needs of your case. If you have the aptitude, consider investing some time and doing some research about eDiscovery solutions that provide predictable, transparent prices outside of the typical hourly and per-GB fee structure. A good eDiscovery platform provider should work with you to develop a fee arrangement that makes sense for your caseload and budget. There is no reason why even a small firm or individual practitioner cannot negotiate subscription-based or consumption-based fees for eDiscovery solutions the same way that forward thinking serial litigants like large corporations and insurers have. The pricing models exist and there is no reason they cannot be scaled for users with smaller demands. Under this type of arrangement, there will be no additional costs or surprise fees, which in turn will allow any practitioner to pass that price predictability on to his or her clients. Ultimately, this lower cost, increased predictability, and efficiency will enable an attorney to grow his or her book of business with repeat customers and referrals.So, if an attorney is able to negotiate an alternative fee arrangement with a legal technology provider, is that the end of the problem? Should that solve all an attorney’s eDiscovery concerns? It’s a start – but no. Even with a customized eDiscovery technology solution, part of the concern for most attorneys is the magnitude of the effort required to respond to discovery requests. On one hand, they’re faced with document requests fashioned by opposing counsel fearful of missing something that might be important unless they are massively overinclusive. They ask for each, every, and all documents and any form of electronic media that involves, concerns, or otherwise relates to 30, 50, 100, or more discrete topics. On the other hand, the attorney must reconcile this task of preserving, identifying, collecting, processing, analyzing, reviewing and producing ESI in a manner that complies with the applicable discovery laws or case specific discovery orders… all under what may be a modest budget approved by the client. This is where experience (or guidance from an experienced attorney), as well as a good eDiscovery technology provider can be a huge help. The principle that underlies a solution to the conundrum as to how to manage an overly broad discovery request with a limited budget is: proportionality. Emphasizing this principle is a major focus of the 2015 amendments to the FRCP. Got it. I think the logical follow up question to that answer is: how can attorneys attain “proportionality” in the face of ridiculous discovery requests (while also not exceeding the limited amount the client is prepared to spend)?The key to balancing these conflicting demands is insisting upon proportionality early and often. The principle needs to be addressed at a granular level with a robust understanding of the client’s data that will be the subject of opposing counsel’s discovery requests. For example, the number of custodians from whom data should be collected should not be a laundry list of everyone who might have knowledge about the issues in the case. Rather, counsel should be focused on the key players and how much data each has. The volume of data that counsel can afford to collect, process, analyze, review, and produce should depend largely on what the litigation budget is, which in turn should generally depend on the amount in controversy. There are exceptions to this rule of thumb, but this approach to proportionality needs to be raised during the initial meetings of counsel in advance of the first case management order. If the case is one where the general rule does not apply (e.g., a matter of public interest), the client should be informed immediately because the cost of litigation is likely to be disproportionate to its economic value and the client may prefer to have some other entity litigate the issue. An experienced attorney should be involved in this meet and confer process because the results of these early efforts are likely to create the foundation and guard rails for the remainder of the case. Any issues that are left to future negotiation create a potential for costs to balloon in unexpected ways. Can you dive a bit deeper into proportionality at different phases of the discovery process? Is there anything else attorneys can do to keep cost from ballooning before data is collected?As I alluded to a moment ago, one key to controlling scope and cost is to negotiate a limited number of custodians that is proportional to the value of the case. In larger cases, it will be appropriate to create tiers of custodians and limit progression into the lower tier custodians to those instances where opposing counsel make a good faith showing that additional discovery is necessary based on identifiable gaps of information rather than upon speculation about what might be found if more discovery is permitted. If opposing counsel doesn’t agree to a limited number of custodians or staging discovery in larger cases, counsel would be well advised to prepare a case management order or a protective order to keep the scope of discovery proportional to the value of the case. To be successful, an attorney and his or her technology provider will have to understand the data in the client’s possession and provide metrics and costs associated with the alternative approaches to discovery.Great advice. How about once data is collected and analysis has begun? How can attorneys keep costs within budget once they've got the data into an eDiscovery platform?Attorneys should continue to budget proportionally throughout the case. This budget will obviously include the activities identified by the Electronic Discovery Reference Model (EDRM). The EDRM provides a roadmap to respond to opposing parties’ discovery requests: identifying those documents that are needed to make our case, regardless of whether opposing parties requested them; winnowing the documents identified to a subset for use in deposition preparation; drafting potentially dispositive motions; and preparing for mediation; and, if necessary, preparing for inclusion on the trial exhibit list. The EDRM was designed to help attorneys identify documents that are reasonably calculated to lead to the discovery of admissible evidence or relate to claims and defenses asserted in the case. In a case with 100,000 documents collected, that could easily be 10,000 to 15,000 documents. The documents considered for use in depositions, law and motion, or mediation will be a small fraction of that amount and will include a similar culling of those documents produced by other parties and third parties. Only a fraction of those will make it onto the trial exhibit list and fewer will be presented to the trier of fact.Responding to discovery and preparing the case for resolution are two very different tasks and the attorney’s budget must accommodate these two different activities. Monies must be reserved for other written discovery requests, both propounding them and responding to them, and for depositions. Because the per-GB prices for these activities are predictable, an attorney and technology provider should be able to readily determine how much information they can afford to collect and put into the eDiscovery workflow. Counsel needs to be ready to share this information with opposing parties during the early meetings of counsel. But what happens when there is just a legitimately large amount of data, even after applying all the proportionality tactics you described earlier? Counsel should only agree to look at more data than that to which the parties originally agreed if opposing counsel can show good cause to incur that time and expense. If more data needs to be analyzed, the only reliable way to avoid busting the budget is to use AI to build on the document classification that occurred during the initial round of eDiscovery activities. Counsel should take advantage of statistically defensible sampling to determine the prevalence of responsive documents in the data and cut off analysis and review when a defensible rate of recall has been achieved. The same technologies should be employed to identify documents that should not be produced, e.g., those that are privileged or contain trade secrets unrelated to the pending litigation or other data exempt from discovery – enabling counsel to reduce the amount of expensive attorney review required on a given case.By proactively managing eDiscovery proportionality and leveraging all the efficiency that modern eDiscovery platforms provide (either by developing the necessary expertise to do so or associating with an attorney who does) – any lawyer will be able to handle any discovery request in a cost-effective manner.You mentioned choosing a database and legal technology provider. Do you have any advice for attorneys on how to choose the best one to meet their needs?I won’t weigh in on specifics, but I will say this: do the necessary research or consult with someone who has. In addition to investigating the various technologies available, counsel must become familiar with a variety of pricing models for delivery of the technologies needed to respond to eDiscovery requests. Instead of treating every case as an a la carte proposition, consider moving to a subscription-based self-service eDiscovery platform solution. This allows counsel savvy with the technology to control his or her cases within the platform and manage costs in a much more granular way than is possible when using a full-service eDiscovery technology provider, without incurring additional licensing, hosting, and technology fees. With a self-service solution, a provider hosts the data within their own cloud (and thus takes on the data security, hosting, and technology fees), while counsels gain access to all the current versions of eDiscovery tools to help manage the client’s costs. It will also allow counsel to customize the platform and automate workflows to meet his or her own specific needs, so that no one is spending time and money re-inventing the wheel with every new case. A self-service solution also comes with the added benefit of being immediately available from any web browser and gives counsel the ability to transfer data into platform at the touch of a button. (This means that when a prospective client asks whether you have a solution to handle the eDiscovery component of a case, the answer will always be an immediate “yes”).What happens if counsel does not feel ready to take on all eDiscovery responsibilities in a “self-service” model?If counsel is not ready to take on full responsibility for managing the eDiscovery process but still wants the cost-savings of a self-service model, find a technology provider that offers project management services and guidance that will act as training wheels until counsel is ready to navigate the process without assistance. There are also service providers who offer flexible arrangements, where large matters can be handled by their full-service team while smaller matters or investigations can remain “self-service” and be handled directly by counsel.Those are great tips, Gordon – I couldn’t have said it better myself. Any last thoughts for attorneys related to discovery and leveraging eDiscovery technology? Thank you, it’s been a pleasure. As for last thoughts, I think it would be this: in 2021, no attorney should fear responding to eDiscovery requests. Attorneys who still have that fear need to start asking, “If the data exists electronically, can I use technology to extract what I need less expensively than if I put eyeballs on every document?” The answer is almost always, “Yes.” The next question those attorneys should ask is, “How do I go about extracting the information I need at the lowest possible cost?” The answer to that question may be unique to each attorney, and this is where I recommend doing some up-front research and preparation to identify the best technology solution before you are looking down the barrel at a tight discovery deadline.Ultimately, finding the right technology solution will enable you to meet every discovery request with confidence and ultimately grow your book of business. If you would like to discuss this topic further, please reach out to Casey at cvanveen@lighthouseglobal.com and/or Gordon Calhoun at Gordon.Calhoun@lewisbrisbois.com.ediscovery-review; ai-and-analyticsediscovery-process, blog, spectra, law-firm, ediscovery-review, ai-and-analyticsediscovery-process; blog; spectra; law-firmcasey van veen
eDiscovery and Review
AI and Analytics
No items found. Please try different search parameters.